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Abstract

Stochastic molecular descriptors have been applied in QSAR studies on small molecules and polymers (including our series in Polymer)

[H. González-Dı́az, A.R. Ramos de, R.R. Molina, Bioinformatics 19 (2003) 2079–2087; H. González-Dı́az, R.R. Molina, E. Uriarte, Bioorg

Med Chem Lett 14 (2004) 4691–4695; H. González-Dı́az, R.R. Molina, E. Uriarte, Polymer (I) 45 (2004) 3845–3853; H. González-Dı́az, E.

Olazábal, N. Castañedo, S.I. Hernádez, A. Morales, H.S. Serrano, et al., J Mol Mod 8 (2002) 237–245; H. González-Dı́az, E. Uriarte, A.R.

Ramos de, Bioorg Med Chem 13 (2005) 323–331; Polymer (II) (2005) accepted. [40,41,42,44,48]]. However, QSAR studies concerning

multiple polymeric RNA molecules, which are among the most important biopolymers, have not been reported to date. The work described

here attempts to extend this research by introducing for the first time stochastic moments for the secondary structure of polymeric RNA

molecules. These moments are subsequently used to seek a QSAR model that classifies a polymeric DNA sequence as a mycobacterial

promoter (mps) or not on the basis of its putative RNA secondary polymeric structure. The model correctly classified 83.7% of 132 mps and

98.89% of 274 control sequences in training. Similar results were obtained in four cross validation experiments using a re-substitution

technique that showed the model to have an average 93.9% of robustness and 94.1% of predictability for the 407 sequences used. The present

model (mpsZ14.21O0K13.42O2K1.1), which has only two variables, compares very favorably in terms of complexity with other models

previously reported by Kalate et al.—these authors used a non-linear artificial neural network and a large parameter space [R.N. Kalate, S.S.

Tambe, B.D. Kulkarni, Comput Biol Chem 27 (2003) 555–564. [82]]. The model can also be back-projected to derive maps showing the

influence of sub-structural RNA patterns on the biological activity of the polymer as a whole.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of molecular descriptors to derive quantitative

structure–activity relationships (QSAR) is an approach of

major interest. Molecular descriptors are numerical indices

that codify either molecular or polymeric structures [1]. The
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general use of QSAR is also illustrated in the works of Roy

and others [2,3]. In this sense, Gónzalez and Morales

applied molecular descriptors in polymer science [4,5]. New

sequences of molecular descriptors have been defined for

DNA [6] and protein sequence QSAR [7–10]. However, in

our opinion, classical QSARs deal with branched rather than

linear polymeric molecules such as many synthetic

polymers and DNA and protein sequences. For this reason,

greater success can be expected for classical molecular

indices when branched polymers are considered. Indeed, the

branched polymer of greatest biological interest is the RNA

secondary structure as described by Mathews, Turner and

Zuker [11]. Nevertheless, despite the fact that more than

1600 molecular descriptors have been reported to date,
Polymer 46 (2005) 6461–6473
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Table 1

Calculation of the stochastic molecular electrostatic moments for RNA secondary structure
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parameters that encode RNA secondary structure in terms of

QSAR systems have yet to be described [12]. In particular, a

very successful method for the structural characterization of

both small molecules and polymers in the more diverse

chemical contexts is based on the concept of moments (see,

for example, Cabrera-Pérez and numerous others works

[13–22]). However, the application of moments or other

molecular descriptors to predict the biological activity of

polymeric RNA molecules has not been reported.

Markov models are well known tools for the character-

ization of the structures of biomolecules. Markov models

have been used to analyze biological sequence data and

have also been used to find new genes from the open reading

frames [23,24]. Another uses of these models are data base

searching and multiple sequence alignment of protein

families and protein domains. Protein turn types and sub-

cellular locations have been successfully predicted [25–28].

Hubbard and Park [29] used amino acid sequence-based

hidden Markov Models to predict secondary structures. In

this sense, Krogh et al. [30] also proposed a hidden Markov

Model architecture. In addition, Markov’s stochastic

process has been used for protein folding recognition [31].

This approach can also be used for the prediction of protein

signal sequences [32,33]. Another seminal work is related to

the application of Markov Chain Theory to Proteomic and

Bioinformatics. Chou applied Markov Models to predict

beta turns and their types, and the prediction of protein
cleavage sites by HIV protease [34–37]. However, the

combination of Markov models and moments theory for the

generation of molecular descriptors that encode biopolymer

structures has not been reported in terms of predicting the

properties of viruses.

Our group has elsewhere introduced a physically

meaningful Markov model that encodes molecular back-

bone information. This model allowed us to introduce

matrix invariants such as stochastic entropies and spectral

moments for the study of molecular properties. More

specifically, entropy-like molecular descriptors have

demonstrated flexibility in a variety of different problems

including the estimation of anticoccidial activity [38] and

chemically-induced agranulocytocis [39] by small-to-

medium sized drug like molecules, modeling the interaction

between drugs and HIV-packaging-region RNA [40], and

predicting protein and virus activity [41–43]. On the other

hand, the stochastic spectral moments introduced by our

group have been largely used for small molecule QSAR

issues including the design of fluckicidal [44], anticancer

[45] and antihypertensive drugs [46]. However, the

application of this approach to polymers has been restricted

to simple RNA [47] or proteins [48] without consideration

of multiple RNA polymeric molecules.

The work described here deals with the definition of a

new Markov model, which makes use of novel stochastic

moments as molecular descriptors for the RNA polymeric



Fig. 1. BIOMARKS 1.0 interface showing the circular representation for RNA of mps T3 from M. tuberculosis, note main stem highlighted in red.
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secondary structure. In this respect, we will consider as an

illustrative example the mycobacterial promoter sequences

(mps) problem, which is addressed for the first time from the

point of view of RNA stochastic moments.
2. Methods
2.1. The initial probability of RNA secondary structure

folding

In analogy to our previous works [38–49], the present

approach employed a Markov chain (MC) model to codify

information about RNA polymeric secondary structure. In

this case the MC model is used to describe an electrostatic-

force-driven RNA secondary structure folding process. The

procedure considered as states of the MC the nucleotides

(nuc) of an RNA sequence [40,47]. This MC is defined by a

stochastic matrix, 1Q, built as a squared table of order n,

where n is the total number of nucleotides in the RNA. The

elements (1pij) of 1Q were the probabilities with which a

truncated electrostatic interaction [50] of energy Eij occurs

between the ith nucleotide (nuci) and the jth (nucj) at time

t1Z1. This time (t1Z1) is considered the time when the

RNA 2D polymeric structure has just started to fold. In other

words, 1pij was conditioned to an abrupt truncation factor

dijZ1 if nuci and nucj are either covalently or hydrogen

bonded or, alternatively, dijZ0 if nuci and nucj are not

adjacent within the RNA secondary structure backbone

[Eq. (1)] [48,49]:
1p Z
dijEijPaC1

kZ1 dikEik

Z
dijðQiQ

�
j =RjÞPaC1

kZ1 dikðQiQ
�
j =RkÞ

KZ
dijðQ

�
j =RjÞPaC1

kZ1 dikðQ
�
j =RkÞ

Z
dij4jPaC1

kZ1 dik4k

(1)

Where we summed up to all the a-neighbors of nuci and

4iZQ�
j =Rj was called the electrostatic potential at the

nucleotide surface (nucj-charge-radius ratio), Rj is the radius

for the nucleotide and Q�
j is the nucleotide charge. For the

sake of simplicity, the parameter Rj was considered here to

be the same for all nucleotides as a rough approximation.

The decision concerning which pairs of nucleotides were

considered to be adjacent in the RNA secondary structure is

an input of this model uploaded from the secondary

structure predicted for RNA molecules using algorithms

described by Mathews, Turner and Zuker [51]. The

calculation of the 1Q matrix for a given mps fragment is

exemplified in Table 1.
2.2. The MC model for RNA electrostatic-driven secondary

structure folding

Once the initial electrostatic interactions have taken

place in the process of RNA polymer chain folding (t1Z1),

it is expected that the more favorably the RNA ‘manage to’

relax to a stable structure the higher will be the stability of

this transcript in the cytoplasm of the cell. Thus, at this

second stage the problem can deal with the calculation of

the probabilities ðkpÞ with which the electrostatic inter-

actions between nucleotides propagate to the other



Table 2

RNA–QSAR model robustness and predictability in cross-validation

Robustness

Train % mps Cs Average % mps Cs

mps 83.7 113 22 mps 83.2 84 17

Cs 98.9 3 268 Cs 99.3 2 202

Total 93.8 116 290 Total 93.9 86 219

cv1 % mps Cs cv2 % mps Cs

mps 84.3 86 16 mps 83.2 84 17

Cs 99.0 2 201 Cs 100.0 0 202

Total 94.1 Total 94.4

cv3 % mps Cs cv4 % mps Cs

mps 82.2 83 18 mps 83.2 84 17

Cs 99.5 1 202 Cs 98.5 3 202

Total 93.8 Total 93.5

Predictability

Train % mps Cs Average % mps Cs

mps 83.7 113 22 mps 84.4 29 5

Cs 98.9 3 268 Cs 98.9 1 67

Total 93.8 Total 94.1

cv1 % mps Cs cv2 % mps Cs

mps 87.9 29 4 mps 79.4 27 7

Cs 98.5 1 67 Cs 100.0 0 69

Total 95.0 Total 93.2

cv3 % mps Cs cv4 % mps Cs

mps 85.3 29 5 mps 85.3 29 5

Cs 97.1 2 66 Cs 100.0 0 66

Total 93.1 Total 95.0
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nucleotides nucj with time (tk with kO1) to reach a folding

equilibrium value.

The most important approximation in the present work

considers that once the first electrostatic interaction takes place

between two nucleotides within the polymer ribbon, the

probabilities ðkpÞ of propagation for such an interaction to

other nucleotides obey Chapman-Kolmogorov equations [45].

In mathematical terms, these probabilities are the elements

of the matrices kQ, which can be calculated as depicted in

Eq. (2) [38–49]:

Y
Z

Y� �k

(2)

The elements of the matrices kQ depend on the adjacency

relationships between the nucleotides on the RNA and the

charge on these nucleotides. For this reason, any molecular

descriptor derived from these matrices necessarily encodes

information on the secondary folding and electrostatic

characteristics of the RNA polymer chain. We therefore

used the moments of the kQ matrices as electrostatic and

secondary folding molecular descriptors for the RNA

polymer [44–49]:

SRpð4ÞZTr
Y� �k

� �
Z oT

Y� �k

oZ
Xn

nucZj

kp (3)

where Tr is the trace operator [12–22,44–49] that indicates

the operation of summing up all the probabilities (kp, self-
return probabilities) within the main diagonal of these

matrices. Table 1 exemplifies the calculation of SRp. The

vector o and its transpose oT represent a Kröcnecker

notation vector, which elements o(j) are equal to 1 if

multiplied an element in the main diagonal of 1Q and 0

otherwise. This notation will be used in Section 3 for

comparative purposes. All calculations of molecular

descriptors were performed with our experimental software

BIOMARKS 1.0 (BIOinformatics MARKovian Studio)

[52]. BIOMARKS uploaded ct files generated by the

software RNAstructure in order to input secondary RNA

structure connectivity information necessary for the

calculation of the different molecular descriptors (SRp)

[53]. These ct files can also be depicted in the BIOMARKS

user interface in, for example, the circular representation

illustrated in Fig. 1.
2.3. QSAR and statistical analysis

The classification of polymers according to different

structural properties [54] is an intriguing field of research. In

this respect, there are many different techniques that are

appropriate for pattern recognition and classification

problems. However, linear discriminant analysis (LDA) is

often preferred by researchers in QSAR, mainly on the basis

of its simplicity [55,56]. In the present work we decided to

use LDA in order to seek a linear discriminant function to



Table 3

Name, sequence, species, training probability, and cross-validation average

probability for all the mps used

Gene

name

Sequence P Pcv

M. tuberculosis

T3 atcgacggccacggctggtctaggac-

gaggtacccggtaacatgctgggcg

1.00 1.00

T6 ccgtccagtctggcaggccggaaa-

catcggtcagcagataggctttaccag

0.98 0.99

T26 ctgcgagcatcatatgccgcgtgcgtggt-

gatgcggcaggatgttggacca

1.00 1.00

T180 gatcactccgagcatgcgcccattgttgtg-

catagggcaggatgccctgg

1.00 1.00

T101 agcgatcgcagccgacgtgatacct-

gaccgttgttgatagtgtcggcggca

1.00 1.00

T119 ccccgtgctcgtagtaggcgtccagcc-

gacccgccgctaccatgcacaagt

0.99 1.00

T125 ccgaggtaaggactgagcatgggcccga-

taaagtgactattatggatttct

0.82 0.86

T129 actcgcggcagattacgcc-

gacggttcctggcgtggttcaa-

tattcgccga

0.99 0.95

T130 actccaacaggtcga-

taacctcctgcgcctgctcgtctatgctgc-

gatccg

0.95 0.96

T150 gacccccgccacgtattgacactttgcga-

cacgcttttatcattttccgac

0.43 0.55

RecA ttcggagcagccgacttgt-

cagtggctgtctctagtgtcacggccaacc-

gaccgat

1.00 0.86

RrnA P1 gagaacctggtgagtctcggtgccga-

gatcgaacgggtatgctgttaggcgacggt-

cacct

1.00 1.00

gyrA gatgggcgaggacgtcgacgcgcggcg-

cagctttatcacccgcaacgccaag-

gatgttcggt

1.00 1.00

cpn60 ccccggcgatccccgtgctcaccacgggt-

gatttccggggcggcatgcgttagcggac-

tagc

1.00 1.00

gyrB P1 gatgtccgacgcacggcgcggtta-

gatgggtaaaaacgaggccagaa-

gatcggccctggcgc

1.00 1.00

gyrB P3 caaggggcctcgccatattgccgg-

taggggtccgcgcgacacctacggataa-

cacgtcgatc

1.00 1.00

85A gaagttgtggttgactacacgag-

cactgccgggcccagcgcctgcagtct-

gacctaattcag

0.99 1.00

85A cgcccgaagttgtggttgactacacgag-

cactgccgggcccagcgcctgcagtct-

gacctaattcag

1.00 1.00

gyrB P2 agcggttggcaacgatgtggtgcgatcgc-

taaagatcaccgggccggcac-

catcgtggcgca

1.00 1.00

rrnA

PCL1

tgaccgaacctggtcttgactccattgccg-

gatttgtattagactggcagggttgccc-

gaaa

0.97 0.98

16S rRNA tgaccgaacctggtcttgactccattgccg-

gatttgtattagactggcagggttgcccc-

gaa

0.98 0.97

glnA tcggcatgccaccggttacgatcttgcc-

gaccatggccccacaatagggccgggga-

gacccggcgt

1.00 0.99

Table 3 (continued)

Gene

name

Sequence P Pcv

glnA ccaccggttacgatcttgccgac-

catggccccacaatagggccgggga-

gacccggcgt

1.00 1.00

KatG PA ggtcatctactggggtctatgtcct-

gattgttcgatatccgacacttcgcgatca-

catccgtgat

0.94 0.96

KatG PA atctactggggtctatgtcctgattgttcga-

tatccgacacttcgcgatcacatccgtgat

0.82 0.85

katG PB gaggcggaggtcatctactggggtc-

tatgtcctgattgttcgatatccga-

cacttcgcgatcac

0.99 0.95

katG PB acgaggcggaggtcatctactggggtc-

tatgtcctgattgttcgatatccga-

cacttcgcgatcac

0.99 0.99

katG PC cctgattgttcgatatccgacacttcgcgat-

cacatccgtgatcacagcccgataacac-

caactcct

0.35 0.51

katG PC ttcgatatccgacacttcgcgatca-

catccgtgatcacagcccgataacac-

caactcct

0.11 0.17

purL cggcttgtccgtttccacgcggccg-

cagcgcgatggggcctagcta-

gactgcctccgtgatgtctcc

1.00 0.78

purC atctcataccagagataccagca-

cagggcgccgtcgtgcggcgga-

taggctggcgtgatgcgccccgc

1.00 1.00

groE caggaagcaagggggcgcccttgagtgc-

tagcactctcatgtatagagtgctagatgg-

caatcggcta

1.00 1.00

groE caggaagcaagggggcgcccttgagtgc-

tagcactctcatgtatagagtgctagatgg-

caatcggcta

1.00 1.00

ahpC tgtgatatatcacctttgcctgacagcgactt-

cacggtacgatggaatgtcgtaac-

caaatgc

0.52 0.64

32 kDa acatgcatggatgcgttgagatgaggat-

gagggaagcaagaatgcagcttgttga-

cagggttc

0.99 0.88

10 kDa aagcaaggggcgcccttgagtgtcag-

cactctcatgtatagagtgctagatgg-

caatcggctaa

0.97 0.97

10 kDa aagcaaggggcgcccttgagtgtcag-

cactctcatgtatagagtgctagatgg-

caatcggct

0.99 0.98

10 kDa aagcaaggggcgcccttgagtgtcag-

cactctcatgtatagagtgctagatggca

0.94 0.95

65 kDa gcgtaagtagcggggttgccgt-

cacccggtgacccccgtttcatcccc-

gatccggaggaatcac

1.00 0.98

mpt64 gagtctggtcaggcatcgtcgtcag-

cagcgcgatgccctatgtttgtcgtcgact-

cagatatcg

1.00 1.00

metA tccggcccccgcgatttggc-

gagcttcgtgcgtgttcggtagcctggcatt-

taccgacgcggggt

1.00 1.00

rpsL gccgcaacgcccgctttgacctgcca-

gactggcggcggg-

tattgtggttgctcgtgcctggcggc

1.00 1.00

38 kDa cgtcgccggactgtcgggggacgtcaag-

gacgccaagcgcggaaattgaagagca-

cagaaaggtatg

1.00 1.00
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Table 3 (continued)

Gene

name

Sequence P Pcv

ppgk cgggccgcagtttaaggtgagggtcatc-

cacgtctcgccgaggagattcgatgac-

cagcac

1.00 1.00

M. bovis BCG

hsp60 P2 cggtgcggggcttcttgcactcggca-

taggcgagtgctaagaataacgttg

1.00 1.00

rRNA tgaccgaacctggtcttgactccattgccg-

gatttgtattagactggcagggttgcccc-

gaa

0.98 0.99

ahpC tgtgatatatcacctttgcctgacagcgactt-

cacggtacgatggaatgtcgcaac-

caaatgc

0.56 0.66

23 K gagtctggtcaggcatcgtcgtcag-

cagcgcgatgccctatgtttgtcgtcgact-

cagatatcg

1.00 0.89

mpb64 gagtctggtcaggcatcgtcgtcag-

cagcgcgatgccctatgtttgtcgtcgact-

cagatatcg

1.00 1.00

18K tggcgtccgaaacacttgaggtgcggcc-

cagcaaggggctacaggttttttccttcacc-

tacgga

1.00 1.00

64K gcgtaagtagcggggttgccgt-

cacccggtgacccccggtttcatcccc-

gatccggaggaatcac

1.00 1.00

rpsL gccgcaacgcccgctttgacctgcca-

gactggcggcggg-

tattgtggttgctcgtgcctggcggc

1.00 1.00

Mpb70 tggcgtccgaaacacttgaggtgcggcc-

cagcaaggggctacaggttttttccttcacc-

tacgga

1.00 1.00

alpha cgactttcgcccgaatcgacatttggcctc-

cacacacggtatgttctggcccgagca-

cacgacga

1.00 1.00

M. leprae

16S rRNA tagtcaacccgggacttgactcctctgctg-

gatctgtattaatctggctgggttgccgaag

0.99 0.99

18Kda cttgtctatcacaacttgcatcaatatatc-

gaccagtgctatatcaaatctatgtagt-

cagga

0.01 0.25

18 Kda cttgtctatcacaacttgcatcaatatatc-

gaccagtgctatatcaaatctatgtagt-

cagga

0.01 0.01

28-kDa tcaatataaccactctggtcacactaacca-

tactcgtaccatcaaccgtgtggggc-

taatcc

0.07 0.06

groE1 agcagcgggccggccttgagtgctag-

cactcgcgtgtatagagtgctagatgg-

cagtcggccag

1.00 0.77

65 kd gaattccggaattgcactcgccttaggg-

gagtgctaaaaatgatcctggcactcgc-

gatc

0.92 0.94

36k gttgggtttcctctcggagggcgcaccgc-

tacgttagcgggatg

1.00 0.98

SOD ggtgggcgcgatcatggcgcagcgttgat-

tatgctagtcg

1.00 1.00

rpsL cgccgttgggtcgctttgacctgcccgag-

cagggacgggtattgtgtttctcgttcct-

gacggct

1.00 1.00

M. smegmatis

alrA gtctgcggcctctgggacaatgggcgccg-

gagattatga

1.00 1.00

Table 3 (continued)

Gene

name

Sequence P Pcv

S4 aagccgaatcgagaccttttgggttcgta-

cacacttgctttataagcctcg

0.42 0.56

S5 aacaagattccgttaatcgtgtctggtg-

gagctggtggtaagcttgatccg

0.97 0.84

S6 catcgattttaaatttttgatagagtgcaaa-

taa

0.00 0.24

S12 acctcgttatgcttctggctatttttgat-

caacttttatacatgggcggtt

0.32 0.23

S14 tcaagcacccaagccaacatggttgtag-

tagtcgttttaccatgtgtacct

0.19 0.22

S16 tccacgc-

gaaccgcttcggcgtgccccgttttccctgt-

tataatatcggcg

0.98 0.79

S18 gatcattgtcttctgttgtctttcgta-

taaagttgttactg

0.10 0.32

S19 tttgatgtagccaaaggctctcaccacct-

gagccatgatagtatccatccc

0.17 0.15

S21 acatggcatttttcatttaaaacaggact-

caggtggtatggttgacatcga

0.99 0.79

S30 gatcagctatgttcttcagtaaaatttcggc-

tatatgttggtg

0.11 0.33

S33 gatccgctcttcttatgatgccagttatgg-

tatctatggttatcg

0.49 0.39

S35 aactaaagtatgtgccgtaattga-

cagtgttctagattatgatgctgcatc

0.04 0.16

S65 ggcacagctcgaagttctacta-

catggcttgctgaatccagtcacattact

0.22 0.17

S69 atcacgatgtcttcatgcttggctt-

caatgctccggtctacaatcagttca

0.24 0.23

S119 gatcaagaagccaatgatttgttaaacg-

caattaatg

0.00 0.07

gyrB cagaatcggtgctgtcgctatctcgcggta-

gactggacgacggatctcaggc

1.00 0.75

recA agagttcgaccg-

gacttgtcggtggtctgctctaacgt-

cacggccaaccgatcgga

1.00 1.00

ask gtttgcccgccgcggcgccccacgat-

gaaccgcacgggctgacg

1.00 1.00

acetami-

dase

ggccggcgttcacccttgacttttatttt-

catctggatatatttcgggtgaatggaaagg

0.91 0.94

rrnB ctctgacctggggatttgactcccagtttc-

caaggacgtaacttattccaggtcagagc-

gac

0.91 0.91

rrnA P1 gaaaacctggtcagcctcggagccga-

gatcgagagagtaagctcgtaggaagcaa-

gacc

0.97 0.96

rrnA P2 ctctgaccaggcgatttgcaatcgcgac-

gaacctcgtattatctttat-

gaagtcgccgcgga

0.93 0.94

rrnA P3 ccgggccagagcgacttgacaagc-

cagccgagatcgtactaagctggc-

gaggttgcctcaga

1.00 0.98

rrnA

PCL1

ccggtccagagcgacttgacaagccaga-

caaagcagtattaagctggcagggttgccc-

caaa

0.83 0.87

rpsL ccgccgtgcac-

gagtttgtttcgtcgcggtcgcccctgg-

tattgtggtggatcgtgcctggccc

1.00 0.96

rpsL cgtgcac-

gagtttgtttcgtcgcggtcgcccctgg-

tattgtggtggatcgtgcctggcccgaaa

1.00 1.00
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Table 3 (continued)

Gene

name

Sequence P Pcv

ahpC tgtgatatatcacctttgcctgacagcgactt-

cacggcacgatggaatgtcgcaac-

caaatgc

0.62 0.71

M. paratuberculosis

pAJB303 gacgacgagggcggtggcgtcgccggtg-

tagccgaacggcacgtgcgcgtaggcc-

cagat

1.00 0.91

pAJB86 ccaccttactcccgatgacgttg-

cacggctgggattaacggtccgcgtgctc-

caggagaca

1.00 1.00

pAJB125 gcaacgagcgcatcattaaagatc-

gaggcgccgggtcatgtccctt-

caccccgcccagctt

0.99 0.99

pAJB300 tcgagttcaagaccctgacgctggcc-

gacctcggcgcgcagccgaccgcg-

cagcggtgcacg

1.00 1.00

pJB305 atccggacgggcagttgttg-

gagtttctgtcggacggttggttggcgg-

catttccggcgagg

1.00 1.00

pAJB304 caccaggtacacgccaagga-

caacggccgtatccggtac-

caacgggtgtgcgagctggacgg

1.00 1.00

P AN ctggtgaagggtgaatcgacaggtacaca-

cagccgccatacacttcgcttcatgccct-

tacg

0.92 0.94

pAJB73 gatcggtgtgccgcttgaaccggcc-

cagctcccgctccagggtgacgtgctc-

gagctc

1.00 0.98

pAJB301 gatctggcgggcggtccagtacaccgc-

gagttcgcgcacgctggccgg-

cagcgtcttggacgcccg

1.00 1.00

M. fortuitum

repA gagctcgtgtcggaccatacaccggtgat-

taatcgtggtctactaccaagc

0.84 0.88

rrnA

PCL1

ccaggatgatgcaacttgacttgccggcaa-

gattcgaattaagctggcggggttgccc-

caaa

0.97 0.94

rrnA P1 gaaaacctgttgagcctcggagccga-

gatcgaaagagtagggtcgtaaacag-

cagtccgggcc

0.99 0.99

rrnA P2a cgctgaccagccgatttgaccttgtagg-

caggcccgcgctaatctttt-

gaagtcgcgcggagcgg

1.00 1.00

rrnA P2b ccgggccagagcgacttgacaagc-

cagccgagatcgtactaagctggc-

gaggttgcctcagaccg

1.00 1.00

rrnA P3 caggatgatgcaacttgacttgccggcaa-

gattcgaattaagctggcggggttgccc-

caaaacag

0.96 0.97

rrnA

PCL1

actggggacgaggtcttgacgcccctgat-

cagatcggtatagactggcagggttgccc-

gaaa

1.00 0.99

rrnA P1 gagaacctccgcagtctcggcgccga-

gatcgagagggtcgcctgaaa-

catgccgtttacctgc

1.00 1.00

rrnA P2 aggggacccccctttttgactccgctca-

gacgtgggctattcttctaaccacaagcc-

caacgc

0.93 0.95

rrnA P3 ctggggacgaggtcttgacgcccctgat-

cagatcggtatagactggcagggttgccc-

gaaagcaa

1.00 0.98

Table 3 (continued)

Gene

name

Sequence P Pcv

M. phlei

pKGR25 cctgtacaccctcgctgcactcgccgag-

gacaagcactatcgcccc-

gacgtcccggcctgg

1.00 1.00

pKGR9 accacgagcacccggtcgtcaggactgc-

gacactcgatgttgtagacgcactggtg-

cagcatg

1.00 1.00

pKGR38 atctggtcgacctgctcgacgaggtcgat-

catcttcttcatctcgccgaacgg-

gatgccctgg

1.00 1.00

ORF1 acctcatggagcacttcgaggtcactgag-

cacgcccacgaactacgagaggccgtgg-

gactgg

1.00 1.00

ORF2 tactttttgtaccgttcgacac-

cagcggtttccgcttccttgccaatctcctg-

caaacaaaccacaatg

0.34 0.51

Mycobacteriophage I3

rrnA P4 gccaaaaccgggaatttgactcaggttcac-

gaacttgatacggtttccgagcgccc-

gaaag

0.88 0.90

rrnA P1 ggcgggtctagtggcggacggcgtcaca-

gaggtatacgatgtgtttcatatc-

gaccgcggttac

1.00 0.97

rrnA

PCL1

gcccccgacccgaagttgactcaagtt-

cattggacttggta-

cagtggtcgggttgccctgaa

0.99 1.00

rrnA P2 gccaaaaccgggaatttgactcaagtt-

caccgaacttgatacggtttc-

caagtcgctcgg

0.80 0.85

rrnA P3 gccaaaaccgggaatttgactcaagtt-

caccgaacttgatacggtttc-

caagtcgctcggaa

0.57 0.63

pKGR1 acacagaccaggagctcgacatgaccgc-

caccgccccctacagcgtcatctggttc-

gaaggcaccccggat

0.99 0.83

Mycobacteriophage L5

71 P2 tacctgtcacaaggtttgctacc-

gagtggggcaggccgctacatttac-

gaccgcgtaacgcca

0.99 0.99

71 P left tttgcgattagggcttgacagccacccggc-

cagtagtgcattcttgtgtcaccgcagcagc

1.00 0.99

71 P1 acaactgaatatggttccgcagacgcaac-

taaattaggggtatccttgacaggcaccaa-

cat

0.11 0.33

M. avium

Avi-3 gccggcgatcgtgggctgataagtct-

tatcgggcatactataagtgtagtgggaaa-

tatcacct

0.96 0.75

pLR7 agccttgttggcggccaactgccggac-

gatcgcggcggccatcgtcctc-

gagctcggccccgtgc

1.00 0.99

M. neoaurum

rrnA

PCL1

gcgagacagagaagcttgactcgccaga-

caagatagtttaagctggcagggttgcccc-

gaa

0.97 0.98

rrnA P1 gaaaacctggtcagcttgggcgccgg-

gatcgagcgagtacactcgtaaga-

gaccggtcgagtg

1.00 0.99

rrnA P3 gcgagacagagaagcttgactcgccaga-

caagatagtttaagctggcagggttgcccc-

gaaacg

0.98 0.98
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Table 3 (continued)

Gene

name

Sequence P Pcv

rrnA P2 ctctgaccagcggatttgacttccgaagg-

cacaaagttctaatctttt-

gaagtcgccgcggggag

0.97 0.97

M. abscessus

rrnA P4 ggcgggtctagtggcggacggcgtcaca-

gaggtatacgatgtgtttcatatc-

gaccgcggttac

0.88 0.90

rrnA P1 gcccccgacccgaagttgactcaagtt-

cattggacttggta-

cagtggtcgggttgccctgaa

1.00 0.97

rrnA

PCL1

gccaaaaccgggaatttgactcaagtt-

caccgaacttgatacggtttc-

caagtcgctcgg

0.99 1.00

rrnA P2 gccaaaaccgggaatttgactcaagtt-

caccgaacttgatacggtttc-

caagtcgctcggaa

0.80 0.85

rrnA P3 ccaaaacccggagtttgactcaagttcacc-

gaacttgatcggttcccgggccgcttacaa

0.57 0.63

M. chelonae

rrnA P2 ccaaaacccggagtttgactcaagttcacc-

gaacttgatcggttcccgggccgcttacaa

0.98 0.88

rrnA P1 ggcggggttagtggcggatggcgtcacc-

gaggtatacgatgtgtttcatatc-

gaccgcggtta

1.00 0.99

rrnA

PCL1

ccccagaacccgaagttgactcaagtt-

cattggacttggta-

cagtggtcgggttgccctgaa

0.97 0.98

rrnA P3 gccaaaaccgggaatttgactcaagtt-

caccgaacttgatcggtttcccagccgccc-

gaaa

0.50 0.62

rrnA P4 gccaaaaccgggaatttgactcaagtt-

caccgaacttgatacggtttcc-

gagccgcccgaaa

0.54 0.53
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decide whether a sequence is an mps or not. In this system

mps (mycobacterial promoter sequence) is the output of the

model and was represented by a dummy variable such that

mpsZ1 if the sequence is an mps and K1 if belongs to the

control sequence (cs) group, which was generated at

random. All of the mps cases were taken from the data set

of polymer sequences collected by Kalate et al. [57]. The

random generation of the control group is a widely accepted

method due to the extremely low probability of creating at

random a positive sequence [58]. The training quality of this

model was assessed by direct inspection of different

statistics such as percentages of good classification (%

mps, % cs, % total), Wilks’ statistics (U), Fisher ratio (F)

and the probability of error [p-level (p)]. The parameters %

mps and % cs were percentages of good classification of

mps and cs. The total percentage of good classification is

denoted % total. The quality of the model was considered

acceptable if all of these percentages were O85%.

Statistical signification was measured by selecting models

for which the values of U and F imply that p!0.05 [59]. On

the other hand, validation of the model was carried out by
means of re-substitution cross validation and all statistical

calculations were carried out with STATISTICA 6.0 [60].

The cross-validation was carried out four times with four

different partitions (training and predicting sets), with 25%

of all sequences being leave-out in each of these studies in

such a way that each virus was out of the training set on at

least one occasion [41,48].
3. Results and discussion

3.1. Mycobacterial promoter polymer sequence recognition

by linear discriminant analysis

While Mycobacteria have a low transcription rate and a

low RNA content per unit DNA, their genomes are rich in

GCC monomer content [61]. Since the GCC content of a

genome affects the codon usage and the promoter

recognition sites in an organism, it is expected that the

transcription and translation signals in Mycobacteria may

be different from those in other bacteria such as E. coli. An

understanding the factors responsible for the low level of

transcription and the possible mechanisms of regulation of

gene expression in Mycobacteria therefore necessitate

examination of the polymer structure of mycobacterial

promoters and their transcription machinery, including

information about the involved RNA polymer molecules

[62,63].

For the reasons outlined above, it is desirable to develop

a QSAR technique to correlate RNA secondary structure

information with the biological properties of sequences and

the study described here aims to address this problem [64].

Fortunately, the RNA secondary structure pictures consist

of two elements—letters (nucleotides) and edges (covalent

and hydrogen bonds). This means that they can be split into

numerous pieces (nucleotides), which are interconnected

and, as indicated above, have only four possible colors: A,

T, G, and C. This aspect can be automatically identified with

the concept of colored graphs, which are commonly dealt

with in graph theory [65,66]. It is worth referring to our

previous publication in this series [H. González-Dı́az,

E. Uriarte, Biopolymer 2005 accepted] for an overview of

these concepts [67]. From this point it is feasible to encode

the information about RNA secondary structure by means of

graph theoretical invariants or the same molecular

descriptors.

However, this issue involves more than mathematics:

The colors of this novel RNA graph have a clear

physicochemical meaning. Consequently, an arbitrary

graph theoretic invariant should not be selected, but one

that is in agreement with the physical sense. A panoply of

molecular descriptors has been used previously in QSAR

studies over a long period of time. Almost all molecular

descriptors are susceptible to a vector–matrixvector rep-

resentation, including quadratic and linear forms. For

instance, the first molecular descriptor defined in a chemical
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context—the Wiener index W (Eq. (4))—is a quadratic form

[68]. In addition, several other classic Zagreb indices M1

(Eq. (5)) and M2 (Eq. (6)), Harary number H (Eq. (7)),

Randic invariant c (Eq. (8)), valence connectivity index cv

(Eq. (9)), the Balaban index J (Eq. (10)), the MTI index

(Eq. (11)), and Moreau-Boroto autocorrelation ATSd (Eq.

(12))—to mention a few examples—can all be expressed in

quadratic, linear or in general vector–matrix–vector forms

[12,69]. Unfortunately, many of these do not have a direct

physical interpretation and have not been used for QSAR

with a number of RNA molecules. This lack of physical

sense can be detected in recent quadratic qk(X) (Eq. (13)),

linear fk(X) (Eq. (15)), and stochastic forms sk(X) (Eq. (16))

introduced by Marrero-Ponce et al. [70–73]:

W Z
1

2
ðu$D$uT Þ (4)

M1 Z v$A$uT (5)

M2 Z
1

2
ðv$A$vT Þ (6)

H Z
1

2
ðu$DKk$uT Þ (7)

cZ v0$A$v0T (8)

cv Z v00$A$v00T (9)

J Z
1

2
$C$ðd0$A$d0T Þ (10)

MTI Z v$ðACDÞ$uT (11)

ATS Zw$mB$wT (12)

qkðXÞZw$M$wT (13)

fkðXÞZw$M$uT (14)

skðXÞZw$Sk$w
T (15)

where, all the matrices and vectors used have been

explained in detail in the literature and, for the sake of

brevity, will not be explained here. In particular, the vector o

(mentioned above in Section 2) may be used here to

represent spectral moment descriptors as quadratic forms.

These indices include the self-return walking counts srwck

(Eq. (16)), the spectral bond moments m(B) (Eq. (17)) and

bond-weighted adjacency matrices m(dB) (Eq. (18)), the

energy moments m(H) (Eq. (19)), the Kirchhoff number Kf

(Eq. (20)), the I3 number (Eq. (22)), [12] and our stochastic

moments SRp (Eq. (21)):

srwckðAÞZ o$A$oT (16)
mkðBÞZ o$B$oT (17)

mkð
dBÞZ o$½ðBCWÞ�k$oT (18)

mkðHÞZ o$H$oT (19)

Kf Z o$ða$LÞ$oT (20)

SRpZ o$
Y� �k

� �
$oT (21)

I3 Z
1

k!

XN
k

mkðAð4;J;uÞÞ

Z
1

k!

XN
k

½o$Að4;J;uÞ$oT � (22)

where, all the matrices and vectors used have again been

explained in detail in the literature. Unfortunately, as is the

case for the other descriptors (Eqs. (4)–(15)), these spectral

moments have not yet been used for QSAR with a number

of RNA molecules. However, the physical sense of spectral

moments is often more clearly stated [17–21] than for other

indices such as the Harary, Balaban, Wiener and Marrero-

Ponce indices, with some spectral moments widely used in

physics. It can be seen more clearly after expansion of Eq.

(22) that the stochastic spectral moments are also vector–

matrix–vector forms:

SRpZ o$
Y� �k

� �
$oT Z 1 o2o,,no

� �

! 1 p1p,,1p
1
p,,,,

,,,,,
,,,,,

1

p,,,1p

2
66664

3
77775$

1 o
2
o
,
,

n

o

2
66664

3
77775

(23)

However, the stochastic spectral moments introduced here

(Table 1) are proportional to the probability with which the

effect of the electrostatic field of one nucleotide propagates

throughout the RNA backbone at distance k and returns to

the initial nucleotide. Consequently, these moments encode

information concerning the RNA biopolymer electrostatics

and secondary structure folding (see Table 1 for details).

For this reason, we used these descriptors to find the mps

QSAR. The data were processed by LDA [56,57] and the

best relationship we found for predicting mps had only two

variables:

mps Z 14:2O0 K13:4O2 K1:1 (24)

Nmps Z 132 Nes Z 274 NTOTAL Z 406

l0 Z 0:93 l2 Z 0:41 lTOTAL Z 0:44



Fig. 2. ROC curve for the present RNA–QSAR model.
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F0 Z 29:0 F0 Z 578:75 FTOTAL Z 515:03

%mps Z 83:7 %es Z 98:89 %TOTAL Z 93:83

The p-level of Fisher’s test for this LDA was !0.05. This

means that the hypothesis of groups overlapping with a 5%

error can be rejected. The equation was derived after

application of Randič’s orthogonalization procedure

[74–77]. The symbol mO represents the orthogonal analog

of SRp where m is the step at which this variable is selected

in the forward stepwise analysis. Details of the overall and

group-specific classifications for these series’ are given in

Table 2. Note that all values remain quite stable under data

variation in training and predicting series [78].

This QSAR model gave an overall accuracy of 93.9% in

training and 94.1% in four different and predicting series’. It

is noteworthy that these values are very high for this kind of

analysis [78]. The name, sequence, species, and resulting

probabilities in training and cross-validation for all the

studied mps are given in Table 3. Direct inspection of

Table 2 shows a model accuracy by species of 95.7% for 46

mps from M. tuberculosis, 100% for 10 mps from M. bovis

BCG, 66.7% for 9 mps from M. leprae, 57.1% for 28 mps from

M. smegmatis, 100.0% for 9 mps from M. paratuberculosis,

100% for 10 mps from M. fortuitum, 80.0% for 5 mps from

M. phlei, 85.7% for 7 mps from Mycobacteriophage I3, 66.7%

for 3 mps from Mycobacteriophage L5, 100% for 2 mps from

M. avium, 100% for 4 mps from M. neoaurum, 100% for 5 mps

from M. abscessus, and 100% for 5 mps from M. chelonae.

Interestingly, M. tuberculosis, which is the most widely

represented species (46 sequences), was predicted with a
very high accuracy along with the least represented species

M. avium (only two sequences). The worst predicted species

was M. smegmatis (57.1%) with 28 mps. We can therefore

expect that there were no outlier species with respect to the

number of mps of this species used for the analysis. In

addition, if the samples of the sequences were distributed in

a completely random fashion between the mps and cs sets,

the rate of correct identification by random assignment

would generally be 1/50!100Z50%. Alternatively, if the

distribution is weighted according to the sizes of subsets,

one would expect.

ðNmps=NTOTALÞ
2 C ðNcs=NTOTALÞ

2

Z ð132=406Þ2!100C ð274=406Þ2!100 Z 10:6C45:5

Z 56:1

Therefore, the rates of correct identification obtained in re-

substitution cross validation are much higher than the

corresponding completely or weighted randomized rates,

which implies that the mps is well correlated with the

stochastic moments used here [79].

In an effort to avoid over-fitting problems we also built

into the above analysis an ROC curve, see Fig. 2. It can be

seen by visual inspection that the ROC curve for the present

QSAR has an area under the curve that is markedly higher

than the area under the random classifier ROC curve

(diagonal). The results obtained in this study are therefore

highly significant in statistical terms [80]. The previous

analysis also takes account of the over-fitting problems in



Table 4

Different possible partitions for RNA back-projection maps of some M. tuberculosis mps

T3 T6

atcgacggccacggctggtctagga ccgtccagtctggcaggccggaaa

cgaggtacccggtaacatgctgggcg catcggtcagcagataggctttaccag

T26 T119

ctgcgagcatcatatgccgcgtgcg ccccgtgctcgtagtaggcgtccag

tggtgatgcggcaggatgttggacca ccgacccgccgctaccatgcacaagt
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the present QSAR [81]. Finally, as well as the accuracy of

the present model, it should be noted that the model is

extremely simple (mpsZ14.21O0K13.42O2K1.1) and has

only two variables. This compares very favorably in terms

of complexity with models previously reported by Kalate et al.,

who used a non-linear artificial neural network and a large

parameter space for the mps data collected by them [82].
3.2. Backprojection analysis for the RNA mps QSAR model

Finally, a back-projection approach was applied in an

effort to gain a further insight into the role played by the

different RNA motifs in mps action. The use of back-

projectable approaches enables the variables in the QSAR to

be projected back into molecular space and this provides
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biologically and chemically significant conclusions [83].

Kalate et al. studied the mps DNA sequences using a caliper

randomization approach, which in our opinion can also be

classified as a back-projection technique. These authors

concluded that that: (i) the K35 box and its upstream region

play a critical role in mycobacterial promoter function, (ii)

K10 box and spacer region also contribute towards

mycobacterial promoter characteristics, and (iii) for

promoter recognition the K10 region is not as important

as the K35 region [82].

However, results have not been reported to date

concerning the secondary structure folding requirements

for the putative RNA sequence of an mps in terms of the

possible electrostatic interactions. In this study the back-

projection is presented as a map in which the secondary

RNA molecule for an mps is partitioned into different

motifs. The spectral moments for these motifs are then

calculated and substituted into the QSAR model to obtain

the contribution of each substructure to the biological

activity. The contribution values were scaled in the range 0

to 100%. The results of this analysis are represented in

Table 4 for some mps from M. tuberculosis as an example.

In these examples it can be predicted that the hairpin stems

and central loops in the putative RNA structure could

positively contribute to the mps activity. However, a more

extensive study of all mps, which is beyond of the scope of

the present paper, will be carried out.
4. Conclusions

The model described here justifies the high level of

interest that researchers have in polymer QSAR studies [84].

This study also shows the importance warranted by

electrostatic properties of polymers in studying the effect

of polymer structure on biological activity [85]. The high

level of accuracy provided by the model and the timelines of

the calculations carried out further justify the use of the

abrupt truncation of the electrostatic field in the QSAR with

stochastic moments for RNA molecules, specifically mps

activity. A similar approach has previously been used in

molecular dynamic studies of other biopolymers [86–89].

Finally, this study confirms the versatility of the stochastic

approach to solve problems related to polymers in

biology [90].
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[41] González-Dı́az H, Molina RR, Uriarte E. Bioorg Med Chem Lett

2004;14:4691–5.
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[47] González-Dı́az H, Ramos de AR, Molina R. Bull Math Biol 2003;65:

991–1002.
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